Sampling-based planning algorithms like Rapidly-exploring Random Tree (RRT) are versatile in solving path planning problems. RRT* offers asymptotical optimality but requires growing the tree uniformly over the free space, which leaves room for efficiency improvement. To accelerate convergence, informed approaches sample states in an ellipsoidal subset of the search space determined by current path cost during iteration. Learning-based alternatives model the topology of the search space and infer the states close to the optimal path to guide planning. We combine the strengths from both sides and propose Neural Informed RRT* with Point-based Network Guidance. We introduce Point-based Network to infer the guidance states, and integrate the network into Informed RRT* for guidance state refinement. We use Neural Connect to build connectivity of the guidance state set and further boost performance in challenging planning problems. Our method surpasses previous works in path planning benchmarks while preserving probabilistic completeness and asymptotical optimality. We demonstrate the deployment of our method on mobile robot navigation in the real world.
翻译:暂无翻译