Visual dialog, which aims to hold a meaningful conversation with humans about a given image, is a challenging task that requires models to reason the complex dependencies among visual content, dialog history, and current questions. Graph neural networks are recently applied to model the implicit relations between objects in an image or dialog. However, they neglect the importance of 1) coreference relations among dialog history and dependency relations between words for the question representation; and 2) the representation of the image based on the fully represented question. Therefore, we propose a novel relation-aware graph-over-graph network (GoG) for visual dialog. Specifically, GoG consists of three sequential graphs: 1) H-Graph, which aims to capture coreference relations among dialog history; 2) History-aware Q-Graph, which aims to fully understand the question through capturing dependency relations between words based on coreference resolution on the dialog history; and 3) Question-aware I-Graph, which aims to capture the relations between objects in an image based on fully question representation. As an additional feature representation module, we add GoG to the existing visual dialogue model. Experimental results show that our model outperforms the strong baseline in both generative and discriminative settings by a significant margin.


翻译:视觉对话旨在与人类就特定图像进行有意义的对话,这是一项具有挑战性的任务,需要模型来说明视觉内容、对话历史和当前问题之间的复杂依赖性。图表神经网络最近被用于模拟图像或对话中对象之间的隐含关系。然而,它们忽略了以下几个方面的重要性:(1) 将对话历史和单词间依赖关系之间的关系结合起来,以说明问题;(2) 根据充分代表的问题来表示图像的表述。因此,我们提议为视觉对话而建立一个新颖的关系-觉悟图形-图象-图象-图象-图象网络(GoG),具体地说,GoG由三个顺序图组成:(1) H-Graph,旨在显示对话历史或对话历史之间的关联关系;(2) 历史-觉觉Q-Graph,目的是通过捕捉基于对话历史共同参考分辨率的单词之间的依赖关系来充分理解问题;(3) 问题-觉察I-Graph,目的是以充分代表问题的方式捕捉图像中对象之间的关系。作为一个额外的特征代表模块,我们将GoG加入到现有的视觉对话模式中。 实验结果结果显示我们的模型以显著的基质模型显示强大的基差。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Knowledge Embedding Based Graph Convolutional Network
Arxiv
24+阅读 · 2021年4月23日
Exploring Visual Relationship for Image Captioning
Arxiv
15+阅读 · 2018年9月19日
VIP会员
相关VIP内容
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员