We investigate the effect of an $\varepsilon$-room of perturbation tolerance on symmetric tensor decomposition from an algorithmic perspective. More precisely, we prove theorems and design algorithms for the following problem: Suppose a real symmetric $d$-tensor $f$, a norm $||.||$ on the space of symmetric $d$-tensors, and $\varepsilon >0$ error tolerance with respect to $||.||$ are given. What is the smallest symmetric tensor rank in the $\varepsilon$-neighborhood of $f$? In other words, what is the symmetric tensor rank of $f$ after a clever $\varepsilon$-perturbation? We provide two different theoretical bounds and three algorithms for approximate symmetric tensor rank estimation. Our first result is a randomized energy increment algorithm for the case of $L_p$-norms. Our second result is a simple sampling-based algorithm, inspired by some techniques in geometric functional analysis, that works for any norm. We also provide a supplementary algorithm in the case of the Hilbert-Schmidt norm. All our algorithms come with rigorous complexity estimates, which in turn yield our two main theorems on symmetric tensor rank with $\varepsilon$-room of tolerance. We also report on our experiments with a preliminary implementation of the energy increment algorithm.


翻译:我们从算法角度来调查一个美元和美元之间的扰动容容度, 以及美元和美元之间的差错容度。 美元和美元之间最小的对称温度等级是美元? 更确切地说, 我们证明了以下问题的理论和设计算法: 假设一个真正的对称美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元, 标准是$- 美元- 美元- 美元- 美元, 标准是美元- 美元- 美元。 我们的第一个结果是对美元- 美元- 美元- 美元。 美元- 邻- 美元- 的最小对称数感应温度等级是美元- 美元? 换句话说, 在一个聪明的美元- 美元- 美元- 美元- 美元- 美元- 美元( 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元/ 美元- 美元- 美元- 美元- 美元- 美元- 美元( 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 的对称) 的对称) 的对调 的对调 的对调 的对等调 的对调和 调 调 调 调 调 调 调 调 调 调 调 调 调 的调 的调 调 的调 的调 。 。 。 。 。 。 。 我们更 更 更 更 更 更 更 更 更 更 更 更 更 更 更 更 更 更 更 更 更 更 更 更 更 更 更 更 更 更 更 更 更 更 和 和 和 和 和 和 和 和 和 和 和 和 和 调 调 和 和 和 调 和 一种

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
76+阅读 · 2021年3月16日
最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年9月23日
Arxiv
54+阅读 · 2022年1月1日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
76+阅读 · 2021年3月16日
最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员