The pivoted QLP decomposition is computed through two consecutive pivoted QR decompositions, and provides an approximation to the singular value decomposition. This work is concerned with a partial QLP decomposition of low-rank matrices computed through randomization, termed Randomized Unpivoted QLP (RU-QLP). Like pivoted QLP, RU-QLP is rank-revealing and yet it utilizes random column sampling and the unpivoted QR decomposition. The latter modifications allow RU-QLP to be highly parallelizable on modern computational platforms. We provide an analysis for RU-QLP, deriving bounds in spectral and Frobenius norms on: i) the rank-revealing property; ii) principal angles between approximate subspaces and exact singular subspaces and vectors; and iii) low-rank approximation errors. Effectiveness of the bounds is illustrated through numerical tests. We further use a modern, multicore machine equipped with a GPU to demonstrate the efficiency of RU-QLP. Our results show that compared to the randomized SVD, RU-QLP achieves a speedup of up to 7.1 times on the CPU and up to 2.3 times with the GPU.
翻译:QLP 分解是通过连续两个分流的 QR 分解计算成的 QLP 分解, 并提供了单值分解的近似值 。 这项工作涉及通过随机化( 随机化, 称为随机化, 称为随机化, 随机化的 QLP (RU- QLP)) 计算出的低级别矩阵部分分解 QLP 。 和 垂直化 QLP 一样, RU- QLP 是分级化的 QLP 。 和 QLP 一样, RU- QLP 是分级, 使用随机抽样抽样抽样和未被稀释的 QR QR 分解。 我们进一步使用一个配备了 RU- QP 的现代、 多功能化机器, 以光谱和 Frobenius 标准( i), 在光谱和 FRU-L 时间上显示我们SU- Q 的随机性C- 的CP 和 SU- RU- Q 时间显示我们RU- 的SU- 和 RU- L) 的S- RU- 。