We study Ward's method for the hierarchical $k$-means problem. This popular greedy heuristic is based on the \emph{complete linkage} paradigm: Starting with all data points as singleton clusters, it successively merges two clusters to form a clustering with one cluster less. The pair of clusters is chosen to (locally) minimize the $k$-means cost of the clustering in the next step. Complete linkage algorithms are very popular for hierarchical clustering problems, yet their theoretical properties have been studied relatively little. For the Euclidean $k$-center problem, Ackermann et al. show that the $k$-clustering in the hierarchy computed by complete linkage has a worst-case approximation ratio of $\Theta(\log k)$. If the data lies in $\mathbb{R}^d$ for constant dimension $d$, the guarantee improves to $\mathcal{O}(1)$, but the $\mathcal{O}$-notation hides a linear dependence on $d$. Complete linkage for $k$-median or $k$-means has not been analyzed so far. In this paper, we show that Ward's method computes a $2$-approximation with respect to the $k$-means objective function if the optimal $k$-clustering is well separated. If additionally the optimal clustering also satisfies a balance condition, then Ward's method fully recovers the optimum solution. These results hold in arbitrary dimension. We accompany our positive results with a lower bound of $\Omega((3/2)^d)$ for data sets in $\mathbb{R}^d$ that holds if no separation is guaranteed, and with lower bounds when the guaranteed separation is not sufficiently strong. Finally, we show that Ward produces an $\mathcal{O}(1)$-approximative clustering for one-dimensional data sets.
翻译:我们研究Ward 的方法 $k$- means 问题 。 这个流行的贪婪的顺差 以\ emph{ 完全链接} 模式为基础 : 从所有数据点开始, 它将两个组相继合并, 组成一个组, 减少一个组 。 一组组选择( 本地) 最大限度地减少 组合在下一个步骤中的成本 。 完整的连接算法对于等级分组问题非常受欢迎, 但是它们的理论属性研究相对较少 。 对于 Euclidean $- center 的问题, Ackermann 等。 显示, 以完整链接计算的所有数据点中, 将两个组的 $k- group 合并成一个最差的近似比率 $\ Theta( log k) 。 如果数据位于 $m), 保证值 ( Orma) 值 值, 保证值 则会提高 $\ a ormodeal- deal deal deal deal 。 当我们以美元 美元或 美元 美元 美元 美元 美元计算时, 美元为正数 则显示, 美元- demaxx 表示 ral- dealbs ds a slation ral ralddddddddds 。