We present an automated data augmentation approach for image classification. We formulate the problem as Monte Carlo sampling where our goal is to approximate the optimal augmentation policies. We propose a particle filtering scheme for the policy search where the probability of applying a set of augmentation operations forms the state of the filter. We measure the policy performance based on the loss function difference between a reference and the actual model, which we afterwards use to re-weight the particles and finally update the policy. In our experiments, we show that our formulation for automated augmentation reaches promising results on CIFAR-10, CIFAR-100, and ImageNet datasets using the standard network architectures for this problem. By comparing with the related work, our method reaches a balance between the computational cost of policy search and the model performance. Our code will be made publicly available.
翻译:我们提出了图像分类自动化数据增强办法。我们将问题作为蒙特卡洛抽样处理,我们的目标是接近最佳增强政策。我们提出了政策搜索的粒子过滤办法,在这种办法中,应用一组增强行动的可能性构成过滤器的状态。我们根据参考和实际模型之间的损失函数差异来衡量政策绩效,我们随后使用这种模式对粒子进行重新加权,并最终更新政策。在我们的实验中,我们显示自动化增强的配方在使用标准网络架构进行这一问题的CIFAR-10、CIFAR-100和图像网络数据集方面取得了大有希望的结果。通过比较相关工作,我们的方法在政策搜索的计算成本与模型绩效之间达到了平衡。我们的代码将公布于众。