A protein performs biological functions by folding to a particular 3D structure. To accurately model the protein structures, both the overall geometric topology and local fine-grained relations between amino acids (e.g. side-chain torsion angles and inter-amino-acid orientations) should be carefully considered. In this work, we propose the Directed Weight Neural Network for better capturing geometric relations among different amino acids. Extending a single weight from a scalar to a 3D directed vector, our new framework supports a rich set of geometric operations on both classical and SO(3)--representation features, on top of which we construct a perceptron unit for processing amino-acid information. In addition, we introduce an equivariant message passing paradigm on proteins for plugging the directed weight perceptrons into existing Graph Neural Networks, showing superior versatility in maintaining SO(3)-equivariance at the global scale. Experiments show that our network has remarkably better expressiveness in representing geometric relations in comparison to classical neural networks and the (globally) equivariant networks. It also achieves state-of-the-art performance on various computational biology applications related to protein 3D structures.
翻译:蛋白质通过折叠到一个特定的 3D 结构来发挥生物功能。 为了精确地模拟蛋白结构, 需要仔细考虑氨基酸( 如侧链螺旋角和氨基酸间酸方向) 之间的整体几何表层和本地微微细关系。 在这项工作中, 我们提议了定向神经网络, 以更好地捕捉不同氨基酸之间的几何关系。 我们从一个标尺到一个 3D 定向矢量的单一重量, 我们的新框架支持在古典和SO(3)- 代表特征上建立一套丰富的几何操作, 我们在上面建了一个用于处理氨基酸信息( 如侧链面角和氨基酸间酸方向)的透视器。 此外, 我们引入了一种蛋白质传递模式, 将定向重量透视器插进现有的图形神经网络, 显示在全球规模上维持SO(3)- 等差的优越性。 实验显示, 我们的网络与古典神经网络和SO(3)- 3- 代表几何关系, 以及( 全球) Q- 3 等质模型相关的网络, 实现状态的状态运行。