According to the evolutionary death-birth protocol, a player is chosen randomly to die and neighbors compete for the available position proportional to their fitness. Hence, the status of the focal player is completely ignored and has no impact on the strategy update. In this work, we revisit and generalize this rule by introducing a weight factor to compare the payoff values of the focal and invading neighbors. By means of evolutionary graph theory, we analyze the model on joint transitive graphs to explore the possible consequences of the presence of a weight factor. We find that focal weight always hinders cooperation under weak selection strength. Surprisingly, the results show a non-trivial tipping point of the weight factor where the threshold of cooperation success shifts from positive to negative infinity. Once focal weight exceeds this tipping point, cooperation becomes unreachable. Our theoretical predictions are confirmed by Monte Carlo simulations on a square lattice of different sizes. We also verify the robustness of the conclusions to arbitrary two-player prisoner's dilemmas, to dispersal graphs with arbitrary edge weights, and to interaction and dispersal graphs overlapping arbitrarily.
翻译:根据进化死亡协议,玩家被随机挑选为死亡,而邻居则争夺与其健康相称的可用位置。 因此, 焦点玩家的地位被完全忽视, 并且对战略更新没有影响。 在这项工作中, 我们重新审视并推广这一规则, 引入一个重量系数来比较焦点和入侵邻居的得失值。 通过进化图理论, 我们分析了联合过渡图模型, 以探索存在重量系数的可能后果。 我们发现, 焦点重量总是阻碍在薄弱的选择力量下的合作。 令人惊讶的是, 结果表明, 合作成功门槛从正值转向负值的重量系数是一个非三重倾点。 一旦合作成功临界点超过这个临界点, 合作便变得无法达到。 我们的理论预测得到了蒙特卡洛在不同大小方形的平方形模拟的证实。 我们还核查了结论对任意的双人囚犯困境、 任意边缘重量的分布图以及任意重叠的相互作用和扩散图的准确性。