We propose learning a depth covariance function with applications to geometric vision tasks. Given RGB images as input, the covariance function can be flexibly used to define priors over depth functions, predictive distributions given observations, and methods for active point selection. We leverage these techniques for a selection of downstream tasks: depth completion, bundle adjustment, and monocular dense visual odometry.
翻译:我们提出学习一个深度协方差函数,应用于几何视觉任务。给定RGB图像作为输入,协方差函数可灵活地用于定义深度函数的先验、给定观测的预测分布以及主动点选择方法。我们利用这些技术处理多个下游任务:深度补全、捆绑调整和单目稠密视觉里程计。