Computational homogenization is the gold standard for concurrent multi-scale simulations (e.g., FE2) in scale-bridging applications. Experimental and synthetic material microstructures are often represented by 3D image data. The computational complexity of simulations operating on such three-dimensional high-resolution voxel data comprising billions of unknowns induces the need for algorithmically and numerically efficient solvers. The inability of voxelized 3D geometries to capture smooth material interfaces accurately, along with the necessity for complexity reduction, motivates a special local coarse-graining technique called composite voxels [Kabel,M. et al. (2015)]. Composite voxels condense multiple fine-scale voxels into a single voxel obeying a theory-inspired constitutive model by employing laminate theory. Composite voxels enhance local field quality at a modest computational cost. Our contribution comprises the generalization towards composite boxels (ComBo) that are nonequiaxed, a feature that can pay off for materials with a preferred direction. A novel image-based normal detection algorithm is devised which improves the accuracy by around 30\% against the orientation cf. [Kabel,M. et al. (2015) ]. Further, the use of ComBo for finite strain simulations is studied in detail. An efficient implementation is proposed, and an essential back-projection algorithm preventing physically inadmissible states is developed, which improves robustness. Various examples show the efficiency of ComBo and the proposed algorithmic enhancements for nonlinear mechanical problems. The general usability is emphasized by examining and comparing the performance of myriad Fast Fourier Transform (FFT) based solvers including a detailed description of the new Doubly-Fine Material Grid (DFMG). All of the employed schemes benefit from the ComBo discretization.


翻译:包含数十亿个未知数的三维高分辨率 voxel 数据的模拟计算复杂性导致需要算法和数字效率高的解析器。 3D voxel 无法精确地获取光滑的材料界面, 以及降低复杂性的必要性, 刺激了一种特殊的本地粗食性技术, 叫做复合 voxel [Kabel, M. et al. (2015) 。 3D 的实验和合成材料微缩结构通常由 3D 图像数据组成。 3D 的模拟的计算复杂性由三维高分辨率数据构成。 3D 模型的计算复杂性使得需要精确地捕捉到光材料界面, 并且需要降低复杂性, 需要一种叫做复合 voxels [Cabel, M.] 实验实验和快速变压性变压法的精确性, 需要更精确地研究 。

0
下载
关闭预览

相关内容

专知会员服务
53+阅读 · 2020年11月3日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关VIP内容
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员