Knowledge Base Completion (KBC) has been a very active area lately. Several recent KBCpapers propose architectural changes, new training methods, or even new formulations. KBC systems are usually evaluated on standard benchmark datasets: FB15k, FB15k-237, WN18, WN18RR, and Yago3-10. Most existing methods train with a small number of negative samples for each positive instance in these datasets to save computational costs. This paper discusses how recent developments allow us to use all available negative samples for training. We show that Complex, when trained using all available negative samples, gives near state-of-the-art performance on all the datasets. We call this approach COMPLEX-V2. We also highlight how various multiplicative KBC methods, recently proposed in the literature, benefit from this train-ing regime and become indistinguishable in terms of performance on most datasets. Our work calls for a reassessment of their individual value, in light of these findings.


翻译:知识完成基础(KBC)最近是一个非常活跃的领域。 几个最近的KBC文件提出了建筑变革、新的培训方法甚至新的配方。 KBC系统通常在标准基准数据集中进行评估: FB15k、FB15k-237、WN18、WN18RRR和Yago3-10。 大多数现有方法在这些数据集中为每个正面实例提供少量负面样本,以节省计算成本。本文讨论了最近的发展情况如何使我们能够利用所有可获得的负面样本进行培训。 我们显示,Complex在利用所有现有负面样本进行培训时,在所有数据集中都提供了近于最先进的性能。我们称之为 ComLEX-V2。 我们还强调了文献中最近提出的多种可重复的KBC方法如何受益于这种火车制度,并在大多数数据集的性能方面变得不可分化。我们的工作要求根据这些发现重新评估它们的个人价值。

0
下载
关闭预览

相关内容

通过学习、实践或探索所获得的认识、判断或技能。
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年9月19日
Cold-start Sequential Recommendation via Meta Learner
Arxiv
15+阅读 · 2020年12月10日
VIP会员
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员