Knowledge Base Completion (KBC) has been a very active area lately. Several recent KBCpapers propose architectural changes, new training methods, or even new formulations. KBC systems are usually evaluated on standard benchmark datasets: FB15k, FB15k-237, WN18, WN18RR, and Yago3-10. Most existing methods train with a small number of negative samples for each positive instance in these datasets to save computational costs. This paper discusses how recent developments allow us to use all available negative samples for training. We show that Complex, when trained using all available negative samples, gives near state-of-the-art performance on all the datasets. We call this approach COMPLEX-V2. We also highlight how various multiplicative KBC methods, recently proposed in the literature, benefit from this train-ing regime and become indistinguishable in terms of performance on most datasets. Our work calls for a reassessment of their individual value, in light of these findings.
翻译:知识完成基础(KBC)最近是一个非常活跃的领域。 几个最近的KBC文件提出了建筑变革、新的培训方法甚至新的配方。 KBC系统通常在标准基准数据集中进行评估: FB15k、FB15k-237、WN18、WN18RRR和Yago3-10。 大多数现有方法在这些数据集中为每个正面实例提供少量负面样本,以节省计算成本。本文讨论了最近的发展情况如何使我们能够利用所有可获得的负面样本进行培训。 我们显示,Complex在利用所有现有负面样本进行培训时,在所有数据集中都提供了近于最先进的性能。我们称之为 ComLEX-V2。 我们还强调了文献中最近提出的多种可重复的KBC方法如何受益于这种火车制度,并在大多数数据集的性能方面变得不可分化。我们的工作要求根据这些发现重新评估它们的个人价值。