项目名称: 纳米晶磁体分层流变对织构发展和热变形能力作用机理研究
项目编号: No.50801014
项目类型: 青年科学基金项目
立项/批准年度: 2009
项目学科: 金属学与金属工艺
项目作者: 王会杰
作者单位: 钢铁研究总院
项目金额: 20万元
中文摘要: 针对纳米晶热变形磁体内微观结构的层状不均匀性对磁体结构和性能的影响,项目通过粉末添加、磁粉粒度优化及热压/热变形工艺控制等,对热变形各向异性纳米晶磁体磁性能、微观结构等进行了深入研究。 1、 研究发现在FeNiCo粉添加量为2 wt%处达到极大值,剩磁Br=1.44T。通过氧化镝粉与快淬粉混合制备热变形各向异性磁体,该方式可显著提高磁体矫顽力,节约重稀土Dy的用量高达40%,成功开发出了高矫顽力热变形磁体,其磁性能:Br = 12.9 kGs, Hcj = 22.5 kOe, (BH)m = 40.1 MGOe。 2、 首先研究了粒度对热变形磁体磁性能的影响,研究发现增加磁粉粒度可显著提高磁体性能,同时磁体磁体微观结构得到显著改善,磁粉粒度在200<D<350μ#26102;,热变形磁体具有优异的性能,最大磁能积达到为 (BH)max=52 MGOe。 3、 热压温度为550℃#26102;磁性能最优。研究表明降低热压温度可显著改善磁体内层状结构不均匀,降低等轴晶层所占比例。最优的热变形温度可增加磁体变形性能,同时抑制晶粒长大,850℃#20026;最优的热变形温度。
中文关键词: 稀土永磁;热压纳米晶磁体;磁性能;矫顽力
英文摘要: For influence of layered inhomogeneity of nanocrystalline hot-deformation magnets on structure and magnetic properties, our studies the effects of the powder blending, melt-spun particle size optimization and hot pressing / hot deformation process control on magnetic properties, microstructure of anisotropic nanocrystalline magnets. 1, the study found that 2 wt% FeNiCo addition led to optimized magnetic properties, remanence Br 1.44T. The coercivity can be significantly improved by blending of Dysprosium oxide powder with rapid quenching powder, and at the same time save up to 40% the amount of the heavy rare earth Dy. High-coercive magnets were successfully developed with magnetic properties: Br = 12.9 kG will Hcj = 22.5 kOe, (BH) m = 40.1 MGOe. 2, Effects of melt-spun particle size on the thermal deformation of the magnetic properties were studied. It was found that the magnetic properties were significantly improved by altering the magnetic powder particle size. the microscopic structure of the magnet magnet has been significantly improved. Superior performance with particle size of 200 μ<D<350 μwere heat obtained,maximum energy product (BH) max over 52 MGOe. 3, The magnetic properties were reached at the optimal hot-pressing temperature of 550 ℃ Studies showed that decreasing of hot-pressing temperature could optimize the layer structure, reduce the proportion of equa-axial layer. The optimal thermal deformation temperature can increase hot-deformability, while suppressing the grain growth at 850 ℃
英文关键词: Rare earth permanent magnets; Hot-pressed nanocrystline magnets; Magnetic properties; Coercivity