The goal of diversity sampling is to select a representative subset of data in a way that maximizes information contained in the subset while keeping its cardinality small. We introduce the ordered diverse sampling problem based on a new metric that measures the diversity in an ordered list of samples. We present a novel approach for generating ordered diverse samples for textual data that uses principal components on the embedding vectors. The proposed approach is simple and compared with existing approaches using the new metric. We transform standard text classification benchmarks into benchmarks for ordered diverse sampling. Our empirical evaluation shows that prevailing approaches perform 6% to 61% worse than our method while also being more time inefficient. Ablation studies show how the parts of the new approach contribute to the overall metrics.
翻译:暂无翻译