Automatic recognition of dysarthric speech remains a highly challenging task to date. Neuro-motor conditions and co-occurring physical disabilities create difficulty in large-scale data collection for ASR system development. Adapting SSL pre-trained ASR models to limited dysarthric speech via data-intensive parameter fine-tuning leads to poor generalization. To this end, this paper presents an extensive comparative study of various data augmentation approaches to improve the robustness of pre-trained ASR model fine-tuning to dysarthric speech. These include: a) conventional speaker-independent perturbation of impaired speech; b) speaker-dependent speed perturbation, or GAN-based adversarial perturbation of normal, control speech based on their time alignment against parallel dysarthric speech; c) novel Spectral basis GAN-based adversarial data augmentation operating on non-parallel data. Experiments conducted on the UASpeech corpus suggest GAN-based data augmentation consistently outperforms fine-tuned Wav2vec2.0 and HuBERT models using no data augmentation and speed perturbation across different data expansion operating points by statistically significant word error rate (WER) reductions up to 2.01% and 0.96% absolute (9.03% and 4.63% relative) respectively on the UASpeech test set of 16 dysarthric speakers. After cross-system outputs rescoring, the best system produced the lowest published WER of 16.53% (46.47% on very low intelligibility) on UASpeech.
翻译:暂无翻译