We develope the framework of transitional conditional independence. For this we introduce transition probability spaces and transitional random variables. These constructions will generalize, strengthen and unify previous notions of (conditional) random variables and non-stochastic variables, (extended) stochastic conditional independence and some form of functional conditional independence. Transitional conditional independence is asymmetric in general and it will be shown that it satisfies all desired relevance relations in terms of left and right versions of the separoid rules, except symmetry, on standard, analytic and universal measurable spaces. As a preparation we prove a disintegration theorem for transition probabilities, i.e. the existence and essential uniqueness of (regular) conditional Markov kernels, on those spaces. Transitional conditional independence will be able to express classical statistical concepts like sufficiency, adequacy and ancillarity. As an application, we will then show how transitional conditional independence can be used to prove a directed global Markov property for causal graphical models that allow for non-stochastic input variables in strong generality. This will then also allow us to show the main rules of causal/do-calculus, relating observational and interventional distributions, in such measure theoretic generality.


翻译:我们开发了过渡性有条件独立框架。 为此,我们引入了过渡性概率空间和过渡性随机变量。这些构造将概括、加强和统一(有条件)随机变量和非随机变量的先前概念,(延伸)随机有条件独立和某种形式的功能性有条件独立。过渡性有条件独立在总体上是不对称的,并将显示它满足了所有期望的关联关系,即单体规则的左版和右版,但对称性、标准、分析性和通用可计量空间除外。作为我们证明过渡性可能性的解体性理论的准备,即这些空间(定期)有条件的马尔科夫内核的存在和基本独特性。过渡性有条件独立将能够表达典型的统计概念,如充足性、适足性和相近性。然后作为应用,我们将展示过渡性有条件独立如何用来证明一种直接的全球马尔科夫属性,以用于用于为主的因果图形模型,允许在强烈的泛泛泛度中进行非随机输入变量。这将使我们能够展示(定期)有条件的马尔科夫骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质骨质

0
下载
关闭预览

相关内容

专知会员服务
88+阅读 · 2021年6月29日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年10月18日
Arxiv
0+阅读 · 2021年10月17日
Arxiv
0+阅读 · 2021年9月14日
VIP会员
相关VIP内容
专知会员服务
88+阅读 · 2021年6月29日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员