Disentanglement learning aims to construct independent and interpretable latent variables in which generative models are a popular strategy. InfoGAN is a classic method via maximizing Mutual Information (MI) to obtain interpretable latent variables mapped to the target space. However, it did not emphasize independent characteristic. To explicitly infer latent variables with inter-independence, we propose a novel GAN-based disentanglement framework via embedding Orthogonal Basis Expansion (OBE) into InfoGAN network (Inference-InfoGAN) in an unsupervised way. Under the OBE module, one set of orthogonal basis can be adaptively found to expand arbitrary data with independence property. To ensure the target-wise interpretable representation, we add a consistence constraint between the expansion coefficients and latent variables on the base of MI maximization. Additionally, we design an alternating optimization step on the consistence constraint and orthogonal requirement updating, so that the training of Inference-InfoGAN can be more convenient. Finally, experiments validate that our proposed OBE module obtains adaptive orthogonal basis, which can express better independent characteristics than fixed basis expression of Discrete Cosine Transform (DCT). To depict the performance in downstream tasks, we compared with the state-of-the-art GAN-based and even VAE-based approaches on different datasets. Our Inference-InfoGAN achieves higher disentanglement score in terms of FactorVAE, Separated Attribute Predictability (SAP), Mutual Information Gap (MIG) and Variation Predictability (VP) metrics without model fine-tuning. All the experimental results illustrate that our method has inter-independence inference ability because of the OBE module, and provides a good trade-off between it and target-wise interpretability of latent variables via jointing the alternating optimization.


翻译:解析性学习旨在构建独立和可解释的潜伏变量,其变异模型是一种广受欢迎的策略。 InfoGAN是一种经典方法,通过最大化互通信息(MI)获取可解释的潜在变量,绘制到目标空间。然而,它没有强调独立特性。为了明确推断独立后的潜在变量,我们提议一个基于GAN的隐蔽框架,通过将Orthogoal Basy 扩展(OBE)嵌入InfoGAN网络(Information-InfoGAN),以一种不受监督的方式,构建一个独立且可解释的隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐,我们可自可变变自为GOli-Olial-Oli-Olider-Olider-IDDDD-Olidedededealalalaldealalalalalalalalalal Idedededededealalalalalalalalalalalalalal-Idu,我们 Odealal-Ide-Ideal-In,我们Odeal-Indedeal-Indedeal-In,我们Odededededealdealalalalal-Ideal-Ideal-Ideal-Idealalal-Ideal-Ideal-Idual-In-In-In-In-I,我们Odualal-I-I-I-In-I-I-I-I-I-I-Idealalalal-Ideal-Ideal-Idal-Ider-I-I-I-Idalal-Idal-Idal-Idal-Idal-Idal-Idalal-Idal-Idal-I-I-I,我们OI-I-I-I-I-I

0
下载
关闭预览

相关内容

AAAI 2021论文接收列表放出! 1692篇论文都在这儿了!
专知会员服务
72+阅读 · 2021年1月3日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
70+阅读 · 2020年8月2日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年12月10日
Arxiv
0+阅读 · 2021年12月7日
Arxiv
4+阅读 · 2019年1月14日
VIP会员
相关资讯
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员