Disentanglement learning aims to construct independent and interpretable latent variables in which generative models are a popular strategy. InfoGAN is a classic method via maximizing Mutual Information (MI) to obtain interpretable latent variables mapped to the target space. However, it did not emphasize independent characteristic. To explicitly infer latent variables with inter-independence, we propose a novel GAN-based disentanglement framework via embedding Orthogonal Basis Expansion (OBE) into InfoGAN network (Inference-InfoGAN) in an unsupervised way. Under the OBE module, one set of orthogonal basis can be adaptively found to expand arbitrary data with independence property. To ensure the target-wise interpretable representation, we add a consistence constraint between the expansion coefficients and latent variables on the base of MI maximization. Additionally, we design an alternating optimization step on the consistence constraint and orthogonal requirement updating, so that the training of Inference-InfoGAN can be more convenient. Finally, experiments validate that our proposed OBE module obtains adaptive orthogonal basis, which can express better independent characteristics than fixed basis expression of Discrete Cosine Transform (DCT). To depict the performance in downstream tasks, we compared with the state-of-the-art GAN-based and even VAE-based approaches on different datasets. Our Inference-InfoGAN achieves higher disentanglement score in terms of FactorVAE, Separated Attribute Predictability (SAP), Mutual Information Gap (MIG) and Variation Predictability (VP) metrics without model fine-tuning. All the experimental results illustrate that our method has inter-independence inference ability because of the OBE module, and provides a good trade-off between it and target-wise interpretability of latent variables via jointing the alternating optimization.
翻译:解析性学习旨在构建独立和可解释的潜伏变量,其变异模型是一种广受欢迎的策略。 InfoGAN是一种经典方法,通过最大化互通信息(MI)获取可解释的潜在变量,绘制到目标空间。然而,它没有强调独立特性。为了明确推断独立后的潜在变量,我们提议一个基于GAN的隐蔽框架,通过将Orthogoal Basy 扩展(OBE)嵌入InfoGAN网络(Information-InfoGAN),以一种不受监督的方式,构建一个独立且可解释的隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐,我们可自可变变自为GOli-Olial-Oli-Olider-Olider-IDDDD-Olidedededealalalaldealalalalalalalalalal Idedededededealalalalalalalalalalalalalal-Idu,我们 Odealal-Ide-Ideal-In,我们Odeal-Indedeal-Indedeal-In,我们Odededededealdealalalalal-Ideal-Ideal-Ideal-Idealalal-Ideal-Ideal-Idual-In-In-In-In-I,我们Odualal-I-I-I-In-I-I-I-I-I-I-Idealalalal-Ideal-Ideal-Idal-Ider-I-I-I-Idalal-Idal-Idal-Idal-Idal-Idal-Idalal-Idal-Idal-I-I-I,我们OI-I-I-I-I-I