The generalized coloring numbers of Kierstead and Yang offer an algorithmically useful characterization of graph classes with bounded expansion. In this work, we consider the hardness and approximability of these parameters. First, we complete the work of Grohe et al. by showing that computing the weak 2-coloring number is NP-hard. Our approach further establishes that determining the weak $r$-coloring number is APX-hard for all $r \geq 2$. We adapt this to the $r$-coloring number as well, proving APX-hardness for all $r \geq 2$. Our reductions also imply that for every fixed $r \geq 2$, no XP algorithm (runtime $O(n^{f(k)})$) exists for testing if either generalized coloring number is at most $k$. Finally, we give an approximation algorithm for the $r$-coloring number which improves both the runtime and approximation factor of the existing approach of Dvo\v{r}\'{a}k. Our algorithm greedily orders vertices with small enough $\ell$-reach for every $\ell \leq r$ and achieves an $O(C_{r-1} k^{r-1})$-approximation, where $C_i$ is the $i$th Catalan number.


翻译:Kierstead 和 Yang 的通用彩色数字为 基尔斯特德 和 Yang 的通用彩色数字提供了一个具有逻辑价值的图表类别外观扩展的描述。 在这项工作中,我们考虑到这些参数的难度和可接受性。 首先,我们完成Grohe 等人的工作,方法是显示计算微弱的 2色数字是 NP- 硬的。 我们的方法进一步确认, 确定所有 $\ geq 2 美元 的微弱彩色数字是 APX- 硬 。 我们将其调整为 $ 和 美元 的彩色数字, 并证明 美元 的 APX- 硬性。 我们的减值还意味着每个固定 $ 2 美元 、 美元 美元 美元 、 没有 XP 算法( 运行时间 $ (näf (k) ) 美元) 来进行测试。 最后, 我们给美元 彩色数字提供近似的算法算法。 Dvo\ v { { { { { { { {a} k。 我们的贪婪订单 美元 和 美元 美元

0
下载
关闭预览

相关内容

专知会员服务
86+阅读 · 2020年12月5日
专知会员服务
124+阅读 · 2020年9月8日
专知会员服务
61+阅读 · 2020年3月19日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年6月30日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Prefix-Free Coding for LQG Control
Arxiv
0+阅读 · 2022年4月15日
Arxiv
0+阅读 · 2022年4月15日
VIP会员
相关VIP内容
专知会员服务
86+阅读 · 2020年12月5日
专知会员服务
124+阅读 · 2020年9月8日
专知会员服务
61+阅读 · 2020年3月19日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年6月30日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员