Network traffic classification is the basis of many network security applications and has attracted enough attention in the field of cyberspace security. Existing network traffic classification based on convolutional neural networks (CNNs) often emphasizes local patterns of traffic data while ignoring global information associations. In this paper, we propose a MLP-Mixer based multi-view multi-label neural network for network traffic classification. Compared with the existing CNN-based methods, our method adopts the MLP-Mixer structure, which is more in line with the structure of the packet than the conventional convolution operation. In our method, the packet is divided into the packet header and the packet body, together with the flow features of the packet as input from different views. We utilize a multi-label setting to learn different scenarios simultaneously to improve the classification performance by exploiting the correlations between different scenarios. Taking advantage of the above characteristics, we propose an end-to-end network traffic classification method. We conduct experiments on three public datasets, and the experimental results show that our method can achieve superior performance.
翻译:网络交通分类是许多网络安全应用的基础,在网络空间安全领域引起了足够的注意。基于神经神经网络的现有网络交通分类经常强调当地交通数据模式,而忽视全球信息协会。在本文件中,我们提议为网络交通分类建立一个基于MLP-Mixer的多视图多标签神经网络。与现有的CNN使用的方法相比,我们的方法采用了MLP-Mixer结构,这比常规的组合操作更符合软件包的结构。在我们的方法中,包被分为包头和包体,同时将包体的流量特征作为不同观点的投入。我们利用多标签设置来学习不同的情景,通过利用不同情景之间的相互关系来改进分类性能。我们利用上述特点,我们提出了终端到终端网络交通分类方法。我们在三个公共数据集上进行实验,实验结果显示我们的方法可以取得优异性性。