We study the collaborative image retrieval problem at the wireless edge, where multiple edge devices capture images of the same object from different angles and locations, which are then used jointly to retrieve similar images at the edge server over a shared multiple access channel (MAC). We propose two novel deep learning-based joint source and channel coding (JSCC) schemes for the task over both additive white Gaussian noise (AWGN) and Rayleigh slow fading channels, with the aim of maximizing the retrieval accuracy under a total bandwidth constraint. The proposed schemes are evaluated on a wide range of channel signal-to-noise ratios (SNRs), and shown to outperform the single-device JSCC and the separation-based multiple-access benchmarks. We also propose two novel SNR-aware JSCC schemes with attention modules to improve the performance in the case of channel mismatch between training and test instances.
翻译:我们研究无线边缘的协作图像检索问题,在无线边缘,多个边缘装置从不同角度和地点捕捉同一物体的图像,然后在共享多进入频道(MAC)上联合使用,在边缘服务器上检索类似图像。我们提出了两个基于学习的深层次联合源码和频道编码(JSCC)新办法,用于在加添加白高山噪音(AWGN)和雷利低速淡化频道上执行这项任务,目的是在带宽总限制下最大限度地提高检索准确性。拟议办法在一系列广泛的频道信号到音频比率(SNRs)上进行评估,并展示出优于单一设备JSCC和基于分离的多访问基准。我们还提出了两个带有关注模块的新型SNR-aware JSCC计划,以提高频道在培训和测试实例不匹配时的性能。