We introduce and analyze MT-OMD, a multitask generalization of Online Mirror Descent (OMD) which operates by sharing updates between tasks. We prove that the regret of MT-OMD is of order $\sqrt{1 + \sigma^2(N-1)}\sqrt{T}$, where $\sigma^2$ is the task variance according to the geometry induced by the regularizer, $N$ is the number of tasks, and $T$ is the time horizon. Whenever tasks are similar, that is, $\sigma^2 \le 1$, this improves upon the $\sqrt{NT}$ bound obtained by running independent OMDs on each task. Our multitask extensions of Online Gradient Descent and Exponentiated Gradient, two important instances of OMD, are shown to enjoy closed-form updates, making them easy to use in practice. Finally, we provide numerical experiments on four real-world datasets which support our theoretical findings.
翻译:我们引入并分析MT-OMD, 这是一种对在线镜光源(OMD)的多任务概括, 其操作方式是共享任务之间的更新。 我们证明 MT- OMD的遗憾是按$\ qrt{1 +\ sgma2\2( N-1)\\\ {sqrt{T}$, 美元是按正则引出的几何来的任务差异, 美元是任务数量, 美元是时间范围。 当任务相似时, 即$\sigma2\\ le 1 美元, 这在运行独立 OMD 获得的 $sqrt{NT} 约束值上有所改进。 我们的在线梯光源和博览的“ 梯度” 的多任务扩展, 显示我们两个重要的 OMD 例, 都享受封闭式更新, 使其易于实践。 最后, 我们提供四个支持我们理论发现的真实数据集的数字实验 。