The excessive search for parking, known as cruising, generates pollution and congestion. Cities are looking for approaches that will reduce the negative impact associated with searching for parking. However, adequately measuring the number of vehicles in search of parking is difficult and requires sensing technologies. In this paper, we develop an approach that eliminates the need for sensing technology by using parking meter payment transactions to estimate parking occupancy and the number of cars searching for parking. The estimation scheme is based on Particle Markov Chain Monte Carlo. We validate the performance of the Particle Markov Chain Monte Carlo approach using data simulated from a GI/GI/s queue. We show that the approach generates asymptotically unbiased Bayesian estimates of the parking occupancy and underlying model parameters such as arrival rates, average parking time, and the payment compliance rate. Finally, we estimate parking occupancy and cruising using parking meter data from SFpark, a large scale parking experiment and subsequently, compare the Particle Markov Chain Monte Carlo parking occupancy estimates against the ground truth data from the parking sensors. Our approach is easily replicated and scalable given that it only requires using data that cities already possess, namely historical parking payment transactions.


翻译:过分搜索停车场,称为游轮,会造成污染和拥挤; 城市正在寻找办法,以减少与搜查停车场有关的消极影响; 然而,适当测量寻找停车场的车辆数量是困难的,需要遥感技术; 在本文件中,我们制定了一种办法,通过使用停车表支付交易来估计停车占用率和寻找停车泊车的车辆数量,从而消除对遥感技术的需要; 估计办法以Poblement Markov Chain Calle Monte Carlo 为基础; 我们利用GI/GI/s队列模拟的数据,验证Particle Markov Cain Calle Monte Carlo 办法的运作情况; 我们表明,这种办法产生了对泊车占用率的不那么公正的巴耶西亚估计以及基本模型参数,如抵达率、平均停车时间和遵守停车标准率等; 最后,我们估计停车占用率,并使用SFpark的停车表数据,大规模停车试验,然后将Partle Markov Call Male 停车占用率估计数与停车场传感器的地面实况数据进行比较。 我们的方法很容易复制,而且可以伸缩缩。 我们的方法,因为只需要使用城市已经拥有的数据,即历史停车费交易。

0
下载
关闭预览

相关内容

专知会员服务
30+阅读 · 2021年6月12日
专知会员服务
60+阅读 · 2020年3月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
2018机器学习开源资源盘点
专知
6+阅读 · 2019年2月2日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年7月28日
Inferred successor maps for better transfer learning
VIP会员
相关资讯
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
2018机器学习开源资源盘点
专知
6+阅读 · 2019年2月2日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员