The theory of eigenvalues and eigenvectors is one of the fundamental and essential components in tensor analysis. Computing the dominant eigenpair of an essentially nonnegative tensor is an important topic in tensor computation because of the critical applications in network resource allocations. In this paper, we consider the aforementioned topic and there are two main contributions. First, we show that an irreducible essentially nonnegative tensor has a unique positive dominant eigenvalue with a unique positive normalized eigenvector. Second, we present a homotopy method to compute the dominant eigenpair and prove that it converges to the desired dominant eigenpair whether the given tensor is irreducible or reducible based on an approximation technique. Finally, we implement the method using a prediction-correction approach for path following and some numerical results are reported to illustrate the efficiency of the proposed algorithm.
翻译:igenvalues 和 eigenvisors 理论是虫子分析的基本和基本组成部分之一。 计算一个基本上非阴性沙子的占支配地位的egenpair 是一个重要主题, 这是因为在网络资源分配中的关键应用。 在本文中, 我们考虑上述主题, 有两个主要贡献 。 首先, 我们显示一个不可减少的实质上非阴性沙子 具有独特的正势占支配地位。 第二, 我们提出一种同质方法来计算占支配地位的egenpair, 并证明它与理想的占支配地位的egenpair 相融合, 无论给定的抗生素是不可复制的, 还是基于近似技术可复制的。 最后, 我们用一种预测- 校正方法来追踪路径, 并且报告一些数字结果来说明拟议算法的效率 。