In this paper, we study the design of deep learning-powered iterative combinatorial auctions (ICAs). We build on prior work where preference elicitation was done via kernelized support vector regressions (SVRs). However, the SVR-based approach has limitations because it requires solving a machine learning (ML)-based winner determination problem (WDP). With expressive kernels (like gaussians), the ML-based WDP cannot be solved for large domains. While linear or quadratic kernels have better computational scalability, these kernels have limited expressiveness. In this work, we address these shortcomings by using deep neural networks (DNNs) instead of SVRs. We first show how the DNN-based WDP can be reformulated into a mixed integer program (MIP). Second, we experimentally compare the prediction performance of DNNs against SVRs. Third, we present experimental evaluations in two medium-sized domains which show that even ICAs based on relatively small-sized DNNs lead to higher economic efficiency than ICAs based on kernelized SVRs. Finally, we show that our DNN-powered ICA also scales well to very large CA domains.
翻译:在本文中,我们研究了深层次学习动力迭代组合拍卖的设计。我们在以前的工作基础上,在通过内心支持矢量回归(SVRs)完成偏向引导时,我们借鉴了先前的工作。然而,基于SVR的方法有其局限性,因为它要求解决机器学习(ML)赢家确定问题(WDP ) 。用显性内核(像粗话),基于ML的WDP无法在大域中解决。虽然线性或二次内核的计算可扩展性更好,但这些内核的表达性有限。在这项工作中,我们通过使用深层神经网络(DNNN)而不是SVRs来解决这些缺点。我们首先展示了基于DNNPWDP的混合整变方案(MIP ) 。第二,我们实验性地比较了DNNPs与SVRs的预测性能。第三,我们在两个中等规模的领域进行了实验性评价,显示即使基于相对小型的DNNGs也导致经济效率高于ICAs的大型CA。