In this paper, we study the design of deep learning-powered iterative combinatorial auctions (ICAs). We build on prior work where preference elicitation was done via kernelized support vector regressions (SVRs). However, the SVR-based approach has limitations because it requires solving a machine learning (ML)-based winner determination problem (WDP). With expressive kernels (like gaussians), the ML-based WDP cannot be solved for large domains. While linear or quadratic kernels have better computational scalability, these kernels have limited expressiveness. In this work, we address these shortcomings by using deep neural networks (DNNs) instead of SVRs. We first show how the DNN-based WDP can be reformulated into a mixed integer program (MIP). Second, we experimentally compare the prediction performance of DNNs against SVRs. Third, we present experimental evaluations in two medium-sized domains which show that even ICAs based on relatively small-sized DNNs lead to higher economic efficiency than ICAs based on kernelized SVRs. Finally, we show that our DNN-powered ICA also scales well to very large CA domains.


翻译:在本文中,我们研究了深层次学习动力迭代组合拍卖的设计。我们在以前的工作基础上,在通过内心支持矢量回归(SVRs)完成偏向引导时,我们借鉴了先前的工作。然而,基于SVR的方法有其局限性,因为它要求解决机器学习(ML)赢家确定问题(WDP ) 。用显性内核(像粗话),基于ML的WDP无法在大域中解决。虽然线性或二次内核的计算可扩展性更好,但这些内核的表达性有限。在这项工作中,我们通过使用深层神经网络(DNNN)而不是SVRs来解决这些缺点。我们首先展示了基于DNNPWDP的混合整变方案(MIP ) 。第二,我们实验性地比较了DNNPs与SVRs的预测性能。第三,我们在两个中等规模的领域进行了实验性评价,显示即使基于相对小型的DNNGs也导致经济效率高于ICAs的大型CA。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
9+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年8月19日
Arxiv
0+阅读 · 2022年8月17日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
64+阅读 · 2021年6月18日
Arxiv
14+阅读 · 2019年9月11日
Arxiv
10+阅读 · 2018年3月23日
VIP会员
相关VIP内容
专知会员服务
44+阅读 · 2020年10月31日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关论文
Arxiv
0+阅读 · 2022年8月19日
Arxiv
0+阅读 · 2022年8月17日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
64+阅读 · 2021年6月18日
Arxiv
14+阅读 · 2019年9月11日
Arxiv
10+阅读 · 2018年3月23日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
9+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员