Training of Generative Adversarial Network (GAN) on a video dataset is a challenge because of the sheer size of the dataset and the complexity of each observation. In general, the computational cost of training GAN scales exponentially with the resolution. In this study, we present a novel memory efficient method of unsupervised learning of high-resolution video dataset whose computational cost scales only linearly with the resolution. We achieve this by designing the generator model as a stack of small sub-generators and training the model in a specific way. We train each sub-generator with its own specific discriminator. At the time of the training, we introduce between each pair of consecutive sub-generators an auxiliary subsampling layer that reduces the frame-rate by a certain ratio. This procedure can allow each sub-generator to learn the distribution of the video at different levels of resolution. We also need only a few GPUs to train a highly complex generator that far outperforms the predecessor in terms of inception scores.


翻译:利用视频数据集对Generation Adversarial Network (GAN) 进行视频数据集培训是一项挑战,因为数据集规模庞大,每个观测都十分复杂。一般而言,用分辨率指数指数来培训GAN尺度的计算成本。在本研究中,我们提出了一个在不受监督的情况下学习高分辨率视频数据集的新型记忆高效方法,该视频数据集的计算成本尺度仅以分辨率线性计算。我们通过将发电机模型设计成一堆小小子生成器,并以特定方式培训模型来实现这一目标。我们用其自身的区分器对每个子生成器进行培训。在培训期间,我们在每一对连续的子生成器中引入一个辅助的副采集层,将框架率降低一定比例。这一程序可以让每个子生成器在不同分辨率级别上学习视频的分布。我们只需要少数几个GPUP来培训一个高度复杂的发电机,在初始分数方面远比前导者要差得多。

0
下载
关闭预览

相关内容

GAN:生成性对抗网,深度学习模型的一种,在神经网络模型中引入竞争机制,非常流行。
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
75+阅读 · 2020年4月24日
生成式对抗网络GAN异常检测
专知会员服务
117+阅读 · 2019年10月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Video-to-Video Synthesis
Arxiv
9+阅读 · 2018年8月20日
Arxiv
8+阅读 · 2018年5月21日
Arxiv
4+阅读 · 2018年3月23日
VIP会员
相关VIP内容
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
75+阅读 · 2020年4月24日
生成式对抗网络GAN异常检测
专知会员服务
117+阅读 · 2019年10月13日
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员