The computer program "Histropy" is an interactive Python program for the quantification of selected features of two-dimensional (2D) images/patterns (in either JPG/JPEG, PNG, GIF, BMP, or baseline TIF/TIFF formats) using calculations based on the pixel intensities in this data, their histograms, and user-selected sections of those histograms. The histograms of these images display pixel-intensity values along the x-axis (of a 2D Cartesian plot), with the frequency of each intensity value within the image represented along the y-axis. The images need to be of 8-bit or 16-bit information depth and can be of arbitrary size. Histropy generates an image's histogram surrounded by a graphical user interface that allows one to select any range of image-pixel intensity levels, i.e. sections along the histograms' x-axis, using either the computer mouse or numerical text entries. The program subsequently calculates the (so-called Monkey Model) Shannon entropy and root-mean-square contrast for the selected section and displays them as part of what we call a "histogram-workspace-plot." To support the visual identification of small peaks in the histograms, the user can switch between a linear and log-base-10 display scale for the y-axis of the histograms. Pixel intensity data from different images can be overlaid onto the same histogram-workspace-plot for visual comparisons. The visual outputs of the program can be saved as histogram-workspace-plots in the PNG format for future usage. The source code of the program and a brief user manual are published in the supporting materials as well as on GitHub. Instead of taking only 2D images as inputs, the program's functionality could be extended by a few lines of code to other potential uses employing data tables with one or two dimensions in the CSV format.
翻译:暂无翻译