Neuronal ensemble inference is a significant problem in the study of biological neural networks. Various methods have been proposed for ensemble inference from experimental data of neuronal activity. Among them, Bayesian inference approach with generative model was proposed recently. However, this method requires large computational cost for appropriate inference. In this work, we give an improved Bayesian inference algorithm by modifying update rule in Markov chain Monte Carlo method and introducing the idea of simulated annealing for hyperparameter control. We compare the performance of ensemble inference between our algorithm and the original one, and discuss the advantage of our method.
翻译:在生物神经网络的研究中,神经网络的神经网络共性推论是一个重大问题,已经提出了从神经活动实验数据中得出共性推论的各种方法,其中包括最近提出了关于基因模型的贝耶斯推论方法,但是,这种方法需要大量的计算成本才能进行适当的推论。在这项工作中,我们通过修改Markov 链的更新规则、引入模拟Annealing用于超光谱控制的概念,提供了改进的贝耶斯推论算法。我们比较了我们的算法和原始算法之间的共性推论,并讨论了我们方法的优点。