Detecting auditory attention based on brain signals enables many everyday applications, and serves as part of the solution to the cocktail party effect in speech processing. Several studies leverage the correlation between brain signals and auditory stimuli to detect the auditory attention of listeners. Recently, studies show that the alpha band (8-13 Hz) EEG signals enable the localization of auditory stimuli. We believe that it is possible to detect auditory spatial attention without the need of auditory stimuli as references. In this work, we use alpha power signals for automatic auditory spatial attention detection. To the best of our knowledge, this is the first attempt to detect spatial attention based on alpha power neural signals. We propose a spectro-spatial feature extraction technique to detect the auditory spatial attention (left/right) based on the topographic specificity of alpha power. Experiments show that the proposed neural approach achieves 81.7% and 94.6% accuracy for 1-second and 10-second decision windows, respectively. Our comparative results show that this neural approach outperforms other competitive models by a large margin in all test cases.
翻译:根据大脑信号检测听觉的注意,可以进行许多日常应用,并成为语音处理中鸡尾酒效应解决方案的一部分。一些研究利用大脑信号和听觉刺激的关联性来检测听众的听觉注意。最近,研究显示,阿尔法波段(8-13赫兹) EEG信号可以使听觉刺激具有地方性。我们认为,在不需要以听觉刺激作为参考的情况下,可以探测听觉空间注意。在这项工作中,我们使用阿尔法功率信号来自动检测空间注意。根据我们的知识,这是首次尝试检测以阿尔法电线信号为基础的空间注意。我们建议了光谱空间特征提取技术,以根据阿尔法力的地形特性探测听觉空间注意(左/右)。实验显示,拟议的神经方法在1秒和10秒决定窗口中分别达到81.7%和94.6%的准确度。我们的比较结果显示,这种神经方法在所有测试案例中都大大超过其他竞争性模型。