Lossy image compression strategies allow for more efficient storage and transmission of data by encoding data to a reduced form. This is essential enable training with larger datasets on less storage-equipped environments. However, such compression can cause severe decline in performance of deep Convolution Neural Network (CNN) architectures even when mild compression is applied and the resulting compressed imagery is visually identical. In this work, we apply the lossy JPEG compression method with six discrete levels of increasing compression {95, 75, 50, 15, 10, 5} to infrared band (thermal) imagery. Our study quantitatively evaluates the affect that increasing levels of lossy compression has upon the performance of characteristically diverse object detection architectures (Cascade-RCNN, FSAF and Deformable DETR) with respect to varying sizes of objects present in the dataset. When training and evaluating on uncompressed data as a baseline, we achieve maximal mean Average Precision (mAP) of 0.823 with Cascade R-CNN across the FLIR dataset, outperforming prior work. The impact of the lossy compression is more extreme at higher compression levels (15, 10, 5) across all three CNN architectures. However, re-training models on lossy compressed imagery notably ameliorated performances for all three CNN models with an average increment of ~76% (at higher compression level 5). Additionally, we demonstrate the relative sensitivity of differing object areas {tiny, small, medium, large} with respect to the compression level. We show that tiny and small objects are more sensitive to compression than medium and large objects. Overall, Cascade R-CNN attains the maximal mAP across most of the object area categories.
翻译:失传图像压缩策略允许通过将数据编码成一种降低的形式来更高效地存储和传输数据。 这对于在储存设备较少的环境中进行更大型的数据集培训至关重要。 但是, 即便在使用轻压缩和由此产生的压缩图像在视觉上完全相同的情况下, 这样的压缩也可以导致深卷神经网络(CNN)结构的性能严重下降。 在这项工作中, 我们采用失落 JPEG压缩方法, 将压缩 {95, 75, 50, 15, 10, 5 5 的六种不同水平提高到红外线( 热) 。 我们的研究从数量上评估了损失物体的日益减少水平对性质不同的大型天体探测结构( Cascade-RCNNN、 FSAF 和可变化的 DETR) 性能的影响。 当培训和评价不压缩数据作为基线时, 我们实现了0. 823 的中度平均精度( mAP ), 在整个FLIR 数据集中层, R- CN NNN 的精度小目标不断压缩, 的精度水平比先前的工作表现。 。 高的物体压缩对高值目标的物体的精确度影响是更高级, 3级, 水平, 水平的中度 水平, 水平显示的深度的深度的深度 水平显示的深度的深度的深度的深度的深度, 10 的深度的深度的深度的深度的深度的深度的深度的深度的深度, 水平, 的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度为10 。