Many high precision (dis)assembly tasks are still being performed by humans, whereas this is an ideal opportunity for automation. This paper provides a framework which enables a non-expert human operator to teach a robotic arm to do complex precision tasks. The framework uses a variable Cartesian impedance controller to execute trajectories learned from kinesthetic human demonstrations. Feedback can be given to interactively reshape or speed up the original demonstration. Board localization is done through a visual estimation of the task board position and refined through haptic feedback. Our framework is tested on the Robothon benchmark disassembly challenge, where the robot has to perform complex precision tasks, such as a key insertion. The results show high success rates for each of the manipulation subtasks, including cases when the box is in novel poses. An ablation study is also performed to evaluate the components of the framework.
翻译:许多高精度(分解)任务仍由人类执行,而这是一个理想的自动化机会。本文提供了一个框架,使非专家人类操作员能够教授机器人臂来完成复杂的精密任务。 框架使用可变的卡尔提斯阻力控制器执行从人类运动演示中学来的轨迹。 可以反馈到互动重塑或加速原始演示。 董事会的本地化是通过对任务委员会位置的直观估计完成的,并通过偶然的反馈进行精细化。 我们的框架是用机器人必须执行复杂精密任务( 如关键插入)的机器人基准来测试的。 结果显示每个操作子任务的成功率都很高, 包括盒子装在新事物中的情况。 进行反向研究是为了评估框架的各个组成部分。