We propose a new approach to proving lower bounds for sizes of dag-like proofs in the proof system Res(lin$_{\mathbb{F}_p}$), where $\mathbb{F}_p$ is a finite field of prime order $p\geq 5$. An exponential lower bound on sizes of arbitrary dag-like refutations in proof systems Res(lin$_{\mathbb{F}}$) has previously been proven in (Part, Tzameret, ITCS'20) in case $\mathbb{F}$ is a field of characteristic $0$ for an instance, which is not CNF: for the binary value principle $x_1+2x_2+\dots+2^{n-1}x_n = -1$. The proof of this lower bound substantially uses peculiarities of characteristic $0$ regime and does not give a clue on how to prove lower bounds neither for finite fields nor for CNFs. Aiming at constructing a bridge between lower bounds for the binary value principle and CNF lower bounds we initiate the development of methods for proving dag-like Res(lin$_{\mathbb{F}_p}$) lower bounds for tautologies of the form $b\notin A(\{0,1\}^n)$, where $A$ is a linear map. The negation of such a tautology can be represented in the language of Res(lin$_{\mathbb{F}_p}$) as a system of linear equations $A\cdot x = b$ unsatisfiable over the boolean assignments. Instances of this form are in some ways simpler than CNFs, this makes analysis of their Res(lin$_{\mathbb{F}_p}$) refutations more approachable and might be aided by tools from linear algebra and additive combinatorics. We identify hardness criterions for instances of the form $A\cdot x = b$ using notions of an error correcting code and what we call $(s, r)$-robustness, a combinatorial, algebraic property of linear systems $A\cdot x = b$, which we introduce. We prove two lower bounds for fragments of Res(lin$_{\mathbb{F}_p}$) that capture two complementary aspects of Res(lin$_{\mathbb{F}_p}$) refutations and constitute a combinatorial toolbox for approaching general dag-like Res(lin$_{\mathbb{F}_p}$) refutations.
翻译:我们提出一种新的方法来证明在验证系统 xg- 直观证据大小的下限 Res( li $\ mathb{ F\\ p} 美元, 其中$\ mathb{ F\ p$是初级订单的有限字段 $p\ geq 5 美元。 在验证系统中, Res( lin $, Tzameret, ITS'20) 在 $\ mathb{ F} 中, 美元是一个特性 $0 的字段, 其中, 美元是美元 美元, 美元是美元, 美元是美元; 美元=p= 5美元。 更低约束的证明在很大程度上使用了 $0 的特性的特性, 并且没有给出一个线索, 我们既不能用有限的字段, 也不能用 CNFSOFS 20 来证明什么是更低的。