We introduce a method for embedding graphs as vectors in a structure-preserving manner, showcasing its rich representational capacity and giving some theoretical properties. Our procedure falls under the bind-and-sum approach, and we show that our binding operation - the tensor product - is the most general binding operation that respects the principle of superposition. We also establish some precise results characterizing the behavior of our method, and we show that our use of spherical codes achieves a packing upper bound. Then, we perform experiments showcasing our method's accuracy in various graph operations even when the number of edges is quite large. Finally, we establish a link to adjacency matrices, showing that our method is, in some sense, a generalization of adjacency matrices with applications towards large sparse graphs.
翻译:我们引入了一种将图形嵌入成矢量的方法, 以结构保存的方式, 展示其丰富的表达能力, 并给出一些理论属性。 我们的程序属于约束和总和方法的范畴, 我们证明我们的约束性操作 — — 高压产品 — — 是尊重叠加原则的最普遍的约束操作。 我们还确定了我们方法行为特征的精确结果, 我们显示我们使用球形代码可以达到包装的上限。 然后, 我们进行实验, 在各种图形操作中展示我们的方法的准确性, 即使边缘数量相当大。 最后, 我们建立了与相邻矩阵的链接, 表明我们的方法在某种程度上是将相邻矩阵与大稀薄图应用的通用。