This paper addresses two major challenges in terahertz (THz) channel estimation: the beam-split phenomenon, i.e., beam misalignment because of frequency-independent analog beamformers, and computational complexity because of the usage of ultra-massive number of antennas to compensate propagation losses. Data-driven techniques are known to mitigate the complexity of this problem but usually require the transmission of the datasets from the users to a central server entailing huge communication overhead. In this work, we employ federated learning (FL), wherein the users transmit only the model parameters instead of the whole dataset, for THz channel estimation to improve the communications-efficiency. In order to accurately estimate the channel despite beam-split, we propose a beamspace support alignment (BSA) technique. By exploiting the sparsity of the THz channel, the proposed approach is implemented with fewer pilot signals than the traditional techniques. Compared to the previous works, our FL-BSA approach provides higher channel estimation accuracy as well as approximately 68 (32) times lower model (channel) training overhead, respectively.
翻译:本文讨论了Thahertz(Thz)频道估计方面的两大挑战:波束-波形现象,即由于频率独立的模拟光源而使波束不匹配,以及由于使用超千米天线来补偿传播损失而使计算复杂化。据了解,数据驱动技术可以减轻这一问题的复杂性,但通常需要将数据集从用户传送到一个中央服务器,从而产生巨大的通信管理费用。在这项工作中,我们采用了联合学习(FL)方法,即用户只传送模型参数,而不是整个数据集,用于Thz频道估计,以提高通信效率。我们提议,尽管有波束-波状线,但为了准确估计频道,我们提议采用波束支持技术。通过利用Thz频道的广度,采用拟议方法的试验信号比传统技术少。与以往的工程相比,我们的FL-BSA方法提供了更高的频道估计准确性,大约68倍于较低的模型(轮式),分别提供了大约68倍于模型(轮式)的培训间接费用。