This paper studies the temporally-correlated massive access system where a large number of users communicate with the base station sporadically and continue transmitting data in the following frames in high probability when being active. To exploit both the sparsity and the temporal correlations in the user activities, we formulate the joint user activity detection and channel estimation problem in multiple consecutive frames as a dynamic compressed sensing (DCS) problem. Particularly, the problem is proposed to be solved under Bayesian inference to fully utilize the channel statistics and the activity evolution process. The hybrid generalized approximate message passing (HyGAMP) framework is leveraged to design a HyGAMP-DCS algorithm, which can nearly achieve the Bayesian optimality with efficient computations. Specifically, a GAMP part for channel estimation and an MP part for activity likelihood update are included in the proposed algorithm, then the extrinsic information is exchanged between them for performance enhancement. Moveover, we develop the expectation maximization HyGAMP-DCS (EM-HyGAMP-DCS) algorithm to adaptively learn the hyperparameters during the estimation procedure when the system statistics are unavailable. Particularly, the analytical tool of state evolution is provided to find the appropriate hyperparameter initialization that ensures EM-HyGAMP-DCS to achieve satisfied performance and fast convergence. From the simulation results, it is validated that our proposed algorithm can significantly outperform the existing methods.


翻译:本文研究与时间有关的大规模访问系统,即大量用户与基地站断断续续地进行交流,并在活动时以很高的概率在以下框架内继续传输数据。为了利用用户活动的广度和时间相关性,我们将用户活动联合探测和连续多次估算问题作为动态压缩感测(DCS)问题在多个连续框架中进行。特别是,建议在巴伊西亚推论下解决该问题,以充分利用频道统计数据和活动演变过程。混合通用近似信息传递(HyGAMP)框架被用来设计一种HyGAMP-DCS算法,该算法几乎能够以高效的计算实现巴伊西亚的最佳性。具体地说,用于频道估算的GAMP部分和用于活动可能性更新的MP部分被纳入拟议的算法中,然后在它们之间交换外部信息,以提高业绩。移动后,我们开发了预期最大化 HyGAMP-DCS(EM-HYGAMP-DCS)算法,以适应性地学习在系统估算程序期间的超度参数,这种算法几乎可以用有效的计算法进行高效计算。特别是,从分析工具能够保证目前的业绩演进。

0
下载
关闭预览

相关内容

[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年12月6日
Arxiv
11+阅读 · 2020年12月2日
VIP会员
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员