This paper addresses two major challenges in terahertz (THz) channel estimation: the beam-split phenomenon, i.e., beam misalignment because of frequency-independent analog beamformers, and computational complexity because of the usage of ultra-massive number of antennas to compensate propagation losses. Data-driven techniques are known to mitigate the complexity of this problem but usually require the transmission of the datasets from the users to a central server entailing huge communication overhead. In this work, we introduce a federated multi-task learning (FMTL), wherein the users transmit only the model parameters instead of the whole dataset, for THz channel and user direction-of-arrival (DoA) estimation to improve the communications-efficiency. We first propose a novel beamspace support alignment technique for channel estimation with beam-split correction. Then, the channel and DoA information are used as labels to train an FMTL model. By exploiting the sparsity of the THz channel, the proposed approach is implemented with fewer pilot signals than the traditional techniques. Compared to the previous works, our FMTL approach provides higher channel estimation accuracy as well as approximately 25 (32) times lower model (channel) training overhead, respectively.
翻译:本文讨论Thahertz (Thz) 频道估计方面的两大挑战:波束-波段现象,即由于频率依赖的光谱模拟光源,波束不匹配,以及由于使用超大比例天线来补偿传播损失,计算复杂性。已知数据驱动技术可以减轻这一问题的复杂性,但通常需要将用户的数据集传输到一个中央服务器,从而产生巨大的通信管理费用。在这项工作中,我们引入了一种混合多任务学习(FMTL),即用户只传送模型参数,而不是整个数据集,用于Thz频道和用户抵达方向(DoA)的估算,以提高通信效率。我们首先提出一种新型的波段支持调整技术,用波束-波段校正校正。然后,频道和DoA信息被用作培训FMTL模型的标签。通过利用Thz频道的紧张性,拟议方法的试点信号比传统技术要少得多,用于Thz频道和用户的定位,用于提高通信效率的定位。比前25频道的精确度,分别提供我们的低水平的模型。