Reinforcement Learning (RL) models have continually evolved to navigate the exploration - exploitation trade-off in uncertain Markov Decision Processes (MDPs). In this study, I leverage the principles of stochastic thermodynamics and system dynamics to explore reward shaping via diffusion processes. This provides an elegant framework as a way to think about exploration-exploitation trade-off. This article sheds light on relationships between information entropy, stochastic system dynamics, and their influences on entropy production. This exploration allows us to construct a dual-pronged framework that can be interpreted as either a maximum entropy program for deriving efficient policies or a modified cost optimization program accounting for informational costs and benefits. This work presents a novel perspective on the physical nature of information and its implications for online learning in MDPs, consequently providing a better understanding of information-oriented formulations in RL.
翻译:暂无翻译