In many empirical settings, directly observing a treatment variable may be infeasible although an error-prone surrogate measurement of the latter will often be available. Causal inference based solely on the observed surrogate measurement of the hidden treatment may be particularly challenging without an additional assumption or auxiliary data. To address this issue, we propose a method that carefully incorporates the surrogate measurement together with a proxy of the hidden treatment to identify its causal effect on any scale for which identification would in principle be feasible had contrary to fact the treatment been observed error-free. Beyond identification, we provide general semiparametric theory for causal effects identified using our approach, and we derive a large class of semiparametric estimators with an appealing multiple robustness property. A significant obstacle to our approach is the estimation of nuisance functions involving the hidden treatment, which prevents the direct application of standard machine learning algorithms. To resolve this, we introduce a novel semiparametric EM algorithm, thus adding a practical dimension to our theoretical contributions. This methodology can be adapted to analyze a large class of causal parameters in the proposed hidden treatment model, including the population average treatment effect, the effect of treatment on the treated, quantile treatment effects, and causal effects under marginal structural models. We examine the finite-sample performance of our method using simulations and an application which aims to estimate the causal effect of Alzheimer's disease on hippocampal volume using data from the Alzheimer's Disease Neuroimaging Initiative.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员