A fundamental tenet of learning theory is that a trade-off exists between the complexity of a prediction rule and its ability to generalize. The double-decent phenomenon shows that modern machine learning models do not obey this paradigm: beyond the interpolation limit, the test error declines as model complexity increases. We investigate over-parameterization in linear regression using the recently proposed predictive normalized maximum likelihood (pNML) learner which is the min-max regret solution for individual data. We derive an upper bound of its regret and show that if the test sample lies mostly in a subspace spanned by the eigenvectors associated with the large eigenvalues of the empirical correlation matrix of the training data, the model generalizes despite its over-parameterized nature. We demonstrate the use of the pNML regret as a point-wise learnability measure on synthetic data and that it can successfully predict the double-decent phenomenon using the UCI dataset.
翻译:学习理论的一个根本原则是,预测规则的复杂性与其概括能力之间存在着权衡。双优现象表明,现代机器学习模式并不符合这一模式:在内推限度之外,测试错误随着模型复杂性的增加而下降。我们利用最近提出的预测性标准化最大可能性(pNML)学习者,即个人数据的最小最大遗憾解决方案,对线性回归中的超参数化进行了调查。我们从中得出其遗憾的上限,并表明如果测试样本主要位于与培训数据经验性相关性矩阵的大型电子值相关的精子空间范围内,则该模型尽管具有过分的参数性,但仍然具有通用性。我们展示了使用PNML遗憾作为合成数据中点向导的可学习度,并且它能够成功地用UCI数据集预测出双重偏差现象。