In this paper we consider regression problems subject to arbitrary noise in the operator or design matrix. This characterization appropriately models many physical phenomena with uncertainty in the regressors. Although the problem has been studied extensively for ordinary/total least squares, and via models that implicitly or explicitly assume Gaussianity, less attention has been paid to improving estimation for regression problems under general uncertainty in the design matrix. To address difficulties encountered when dealing with distributions of sums of random variables, we rely on the saddle point method to estimate densities and form an approximate log-likelihood to maximize. We show that the proposed method performs favorably against other classical methods.


翻译:在本文中,我们考虑在操作者或设计矩阵中出现任意噪音的回归问题,这种定性适当地模型了许多物理现象,在回归者中具有不确定性。虽然这个问题已经对普通/全部最小方块进行了广泛研究,并通过隐含或明确假定高斯的模型进行了广泛研究,但对于改进设计矩阵中一般不确定性情况下回归问题的估算,没有那么重视。为了解决在处理随机变量总量分配时遇到的困难,我们依靠支撑点方法来估计密度并形成一种大致的日志相似性以最大化。我们表明,拟议的方法与其他经典方法相比效果较好。

0
下载
关闭预览

相关内容

Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
元学习与图神经网络逻辑推导,55页ppt
专知会员服务
128+阅读 · 2020年4月25日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年5月31日
Arxiv
0+阅读 · 2021年5月28日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员