Following a recently considered generalisation of linear equations to unordered-data vectors and to ordered-data vectors, we perform a further generalisation to k-element-sets-of-unordered-data vectors. These generalised equations naturally appear in the analysis of vector addition systems (or Petri nets) extended so that each token carries a set of unordered data. We show that nonnegative-integer solvability of linear equations is in nondeterministic-exponential-time while integer solvability is in polynomial-time.
翻译:在最近考虑将线性方程式概括为无顺序数据矢量和有顺序数据矢量之后,我们进一步对未顺序数据矢量作了概括化的K元素集集集进行概括化。这些概括式方程式自然出现在对矢量添加系统(或Petri net)扩展的分析中,以便每个符号都携带一组未顺序数据。我们显示,线性方程式的非负-内位溶解性处于非非非定性-耗竭时间,而整数溶性则处于多元时间。