We propose a location-adaptive self-normalization (SN) based test for change points in time series. The SN technique has been extensively used in change-point detection for its capability to avoid direct estimation of nuisance parameters. However, we find that the power of the SN-based test is susceptible to the location of the break and may suffer from a severe power loss, especially when the change occurs at the early or late stage of the sequence. This phenomenon is essentially caused by the unbalance of the data used before and after the change point when one is building a test statistic based on the cumulative sum (CUSUM) process. Hence, we consider leaving out the samples far away from the potential locations of change points and propose an optimal data selection scheme. Based on this scheme, a new SN-based test statistic adaptive to the locations of breaks is established. The new test can significantly improve the power of the existing SN-based tests while maintaining a satisfactory size. It is a unified treatment that can be readily extended to tests for general quantities of interest, such as the median and the model parameters. The derived optimal subsample selection strategy is not specific to the SN-based tests but is applicable to any method that relies on the CUSUM process, which may provide new insights in the area for future research.


翻译:我们建议对时间序列的变化点进行基于位置的自适应自我正常化(SN)测试。SN技术在变化点检测中广泛应用,以获得避免直接估计干扰参数的能力。然而,我们发现,基于SN测试的力量很容易受到断裂地点的影响,并可能遭受严重的功率损失,特别是当变化发生在序列的早期阶段或后期时,特别是当变化发生在顺序的早期阶段或后期时。这一现象主要是由于在变化点之前和之后使用的数据的不平衡造成的。当一个人正在根据累积总和(CUSUUM)进程建立测试统计时。因此,我们考虑将样本远离潜在变化点的位置,并提出最佳的数据选择方案。根据这个办法,将基于SNN测试的新测试数据用于调整断裂地点。新的测试可以大大提高现有基于SN的测试的力量,同时保持令人满意的尺寸。这是一种统一的处理方法,可以很容易扩展为一般利益量的测试,例如中位值和模型参数。因此,我们考虑将样品从可能的变异点中抽出最佳的子选择战略远离潜在的变异点,根据SNUM的任何区域进行特定的深入研究。新的研究方法,这种选择战略可能以SNUF的任何区域为SNUU的精确方法。

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
123+阅读 · 2020年9月8日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
已删除
将门创投
4+阅读 · 2019年6月5日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年12月29日
Arxiv
0+阅读 · 2021年12月27日
Arxiv
4+阅读 · 2020年3月19日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
123+阅读 · 2020年9月8日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
已删除
将门创投
4+阅读 · 2019年6月5日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员