Finite linear least squares is one of the core problems of numerical linear algebra, with countless applications across science and engineering. Consequently, there is a rich and ongoing literature on algorithms for solving linear least squares problems. In this paper, we explore a variant in which the system's matrix has one infinite dimension (i.e., it is a quasimatrix). We call such problems semi-infinite linear regression problems. As we show, the semi-infinite case arises in several applications, such as supervised learning and function approximation, and allows for novel interpretations of existing algorithms. We explore semi-infinite linear regression rigorously and algorithmically. To that end, we give a formal framework for working with quasimatrices, and generalize several algorithms designed for the finite problem to the infinite case. Finally, we suggest the use of various sampling methods for obtaining an approximate solution.


翻译:线性最小方形是数字线性代数的核心问题之一,在科学和工程方面有着无数的应用。 因此,在解决线性最小方形问题的算法方面,有丰富而不断的文献。 在本文中,我们探讨了一个变方,在这个变方中,系统的矩阵有一个无限的维度(即它是一个准矩阵)。我们称之为半无穷线性线性回归问题。正如我们所显示的那样,半无穷性案例出现在几个应用中,例如监督学习和功能近似,并允许对现有算法进行新的解释。我们从逻辑上严格地探索半无穷线性线性回归。为此,我们给出了与准矩阵合作的正式框架,并将为有限问题设计的几种算法推广到无限。最后,我们建议使用各种抽样方法来获得近似的解决办法。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
39+阅读 · 2020年10月13日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
38+阅读 · 2020年12月2日
VIP会员
相关资讯
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员