Object Re-IDentification (ReID), one of the most significant problems in biometrics and surveillance systems, has been extensively studied by image processing and computer vision communities in the past decades. Learning a robust and discriminative feature representation is a crucial challenge for object ReID. The problem is even more challenging in ReID based on Unmanned Aerial Vehicle (UAV) as the images are characterized by continuously varying camera parameters (e.g., view angle, altitude, etc.) of a flying drone. To address this challenge, multiscale feature representation has been considered to characterize images captured from UAV flying at different altitudes. In this work, we propose a multitask learning approach, which employs a new multiscale architecture without convolution, Pyramid Vision Transformer (PVT), as the backbone for UAV-based object ReID. By uncertainty modeling of intraclass variations, our proposed model can be jointly optimized using both uncertainty-aware object ID and camera ID information. Experimental results are reported on PRAI and VRAI, two ReID data sets from aerial surveillance, to verify the effectiveness of our proposed approach


翻译:物体再识别(ReID)是过去几十年来在图像处理和计算机视觉界中广泛研究的生物鉴别和监测系统中最重要的问题之一,在过去几十年中,通过图像处理和计算机视觉界广泛研究了生物鉴别和监视系统(ReID)中的最重要问题。学习一个强有力和具有歧视性的特点是物体再识别的关键挑战。这个问题在无人驾驶飞行器(UAV)的ReID中甚至更具有挑战性,因为图像的特点是一架飞行无人驾驶飞机的摄像参数(例如,视野角度、高度等)不断变化。为了应对这一挑战,已考虑采用多种规模的特征代表来描述从无人驾驶飞行器在不同高度飞行中拍摄的图像。在这项工作中,我们提出了一个多任务学习方法,即采用新的多规模结构,而没有变幻无变,金字形视觉变异变变变变(PVT),作为以无人驾驶飞行器为基础的物体再识别的主干。通过对等变的不确定性模型进行模拟,我们提议的模型可以联合优化,同时使用不确定的物体识别和相机识别资料。关于PRAI和VRAI的实验结果,这是两套来自空中监视的ReID数据组,以核查我们拟议方法的有效性。

0
下载
关闭预览

相关内容

Pyramid is a small, fast, down-to-earth Python web application development framework.
专知会员服务
61+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员