Object Re-IDentification (ReID), one of the most significant problems in biometrics and surveillance systems, has been extensively studied by image processing and computer vision communities in the past decades. Learning a robust and discriminative feature representation is a crucial challenge for object ReID. The problem is even more challenging in ReID based on Unmanned Aerial Vehicle (UAV) as the images are characterized by continuously varying camera parameters (e.g., view angle, altitude, etc.) of a flying drone. To address this challenge, multiscale feature representation has been considered to characterize images captured from UAV flying at different altitudes. In this work, we propose a multitask learning approach, which employs a new multiscale architecture without convolution, Pyramid Vision Transformer (PVT), as the backbone for UAV-based object ReID. By uncertainty modeling of intraclass variations, our proposed model can be jointly optimized using both uncertainty-aware object ID and camera ID information. Experimental results are reported on PRAI and VRAI, two ReID data sets from aerial surveillance, to verify the effectiveness of our proposed approach
翻译:物体再识别(ReID)是过去几十年来在图像处理和计算机视觉界中广泛研究的生物鉴别和监测系统中最重要的问题之一,在过去几十年中,通过图像处理和计算机视觉界广泛研究了生物鉴别和监视系统(ReID)中的最重要问题。学习一个强有力和具有歧视性的特点是物体再识别的关键挑战。这个问题在无人驾驶飞行器(UAV)的ReID中甚至更具有挑战性,因为图像的特点是一架飞行无人驾驶飞机的摄像参数(例如,视野角度、高度等)不断变化。为了应对这一挑战,已考虑采用多种规模的特征代表来描述从无人驾驶飞行器在不同高度飞行中拍摄的图像。在这项工作中,我们提出了一个多任务学习方法,即采用新的多规模结构,而没有变幻无变,金字形视觉变异变变变变(PVT),作为以无人驾驶飞行器为基础的物体再识别的主干。通过对等变的不确定性模型进行模拟,我们提议的模型可以联合优化,同时使用不确定的物体识别和相机识别资料。关于PRAI和VRAI的实验结果,这是两套来自空中监视的ReID数据组,以核查我们拟议方法的有效性。