Emerging technologies like hypersonic aircraft, space exploration vehicles, and batteries avail fluid circulation in embedded microvasculatures for efficient thermal regulation. Modeling is vital during these engineered systems' design and operational phases. However, many challenges exist in developing a modeling framework. What is lacking is an accurate framework that (i) captures sharp jumps in the thermal flux across complex vasculature layouts, (ii) deals with oblique derivatives (involving tangential and normal components), (iii) handles nonlinearity because of radiative heat transfer, (iv) provides a high-speed forecast for real-time monitoring, and (v) facilitates robust inverse modeling. This paper addresses these challenges by availing the power of physics-informed neural networks (PINNs). We develop a fast, reliable, and accurate Scientific Machine Learning (SciML) framework for vascular-based thermal regulation -- called CoolPINNs: a PINNs-based modeling framework for active cooling. The proposed mesh-less framework elegantly overcomes all the mentioned challenges. The significance of the reported research is multi-fold. First, the framework is valuable for real-time monitoring of thermal regulatory systems because of rapid forecasting. Second, researchers can address complex thermoregulation designs inasmuch as the approach is mesh-less. Finally, the framework facilitates systematic parameter identification and inverse modeling studies, perhaps the current framework's most significant utility.
翻译:超音速飞机、空间探索飞行器和电池等新兴技术在嵌入微血管中流体流体循环,以有效热调控。建模在这些设计系统的设计和运行阶段至关重要。建模在这些系统的设计和运作阶段中至关重要。然而,在开发模型框架方面存在着许多挑战。缺少的是一个准确的框架,即(一) 捕捉复杂的血管布局之间热通通量的急剧跳跃,(二) 处理隐性衍生物(涉及相近和正常部件),(三) 处理由于辐射热传输而形成的非线性模型框架,(四) 提供实时监测的高速度预报,(五) 促进强有力的反型模型。本文通过利用物理学知情神经网络(PINNS)的力量来应对这些挑战。我们为基于血管的热调控调节(SciML)制定快速、可靠和准确的科学机器学习(SciML)框架 -- -- 称为CoolPINNS:基于PINNs的热冷却模式模型框架。拟议的模范框架优克服了所有上述挑战。所报告的研究的意义可能是实用性框架,而实用性研究的意义可能是当前精确的快速的,因为精确的精度框架是精确的精度的精度结构。最后的精度的精度,因此的精度框架是精确的精度的精度的精度的精度的精度的精度的精度。</s>