Zero-inflated continuous data ubiquitously appear in many fields, in which lots of exactly zero-valued data are observed while others distribute continuously. Due to the mixed structure of discreteness and continuity in its distribution, statistical analysis is challenging especially for multivariate case. In this paper, we propose two copula-based density estimation models that can cope with multivariate correlation among zero-inflated continuous variables. In order to overcome the difficulty in the use of copulas due to the tied-data problem in zero-inflated data, we propose a new type of copula, rectified Gaussian copula, and present efficient methods for parameter estimation and likelihood computation. Numerical experiments demonstrates the superiority of our proposals compared to conventional density estimation methods.
翻译:零膨胀连续数据在许多领域中广泛出现,特点是存在大量的实际为零值数据,同时也存在连续分布的数据。由于其分布的混合结构中既包含离散性又包含连续性,统计分析是具有挑战性的,特别是在多变量情况下。在本文中,我们提出了两种基于联合分布估计模型的方法,用于处理零膨胀连续变量的多元相关性。为了克服因零膨胀数据中关键数据问题而使用联合分布的困难,我们提出了一种新的联合分布类型——修正高斯联合分布,并提出了参数估计和似然计算的有效方法。数值实验表明,与传统的密度估计方法相比,我们的方法具有优异性。