Earth system models are complex integrated models of atmosphere, ocean, sea ice, and land surface. Coupling the components can be a significant challenge due to the difference in physics, temporal, and spatial scales. This study explores new coupling strategies for the fluid-fluid interaction problem based on multirate partitioned Runge-Kutta methods. We consider compressible Navier-Stokes equations with gravity coupled through a rigid-lid interface. Our large-scale numerical experiments reveal that multirate partitioned Runge-Kutta coupling schemes (1) can conserve total mass; (2) have second-order accuracy in time; and (3) provide favorable strong- and weak-scaling performance on modern computing architectures. We also show that the speedup factors of multirate partitioned Runge-Kutta methods match theoretical expectations over their base (single-rate) method.
翻译:地球系统模型是大气、海洋、海洋、海冰和陆地表面的复杂综合模型。由于物理、时间和空间尺度的差异,将各组成部分结合起来可能是一项重大挑战。本研究探索了基于多流体分割龙格-库塔方法的流体-流体互动问题新的混合战略。我们考虑的是可压缩的纳维-斯托克斯方程式,通过僵硬的边际界面结合引力。我们的大规模数字实验显示,多流体分割-库塔组合计划 (1) 能够保护总质量;(2) 时间精确度为第二阶;(3) 在现代计算结构中提供有利强弱的缩放性功能。我们还表明,多流体分割-库塔方法的加速因子符合对基础(单流率)方法的理论期望。