Large-scale language models such as BERT have achieved state-of-the-art performance across a wide range of NLP tasks. Recent studies, however, show that such BERT-based models are vulnerable facing the threats of textual adversarial attacks. We aim to address this problem from an information-theoretic perspective, and propose InfoBERT, a novel learning framework for robust fine-tuning of pre-trained language models. InfoBERT contains two mutual-information-based regularizers for model training: (i) an Information Bottleneck regularizer, which suppresses noisy mutual information between the input and the feature representation; and (ii) a Robust Feature regularizer, which increases the mutual information between local robust features and global features. We provide a principled way to theoretically analyze and improve the robustness of representation learning for language models in both standard and adversarial training. Extensive experiments demonstrate that InfoBERT achieves state-of-the-art robust accuracy over several adversarial datasets on Natural Language Inference (NLI) and Question Answering (QA) tasks. Our code is available at https://github.com/AI-secure/InfoBERT.


翻译:然而,最近的研究表明,这种基于BERT的模型很容易面对文字对抗性攻击的威胁。我们的目标是从信息理论的角度解决这一问题,并提出InfoBERT,这是对预先培训的语言模型进行严格微调的新学习框架。InfoBERT包含两个基于相互信息的示范培训规范器:(一) 信息瓶式常规化器,它压制输入和特征代表之间的相互信息噪音;(二) 机械化功能常规化器,它增加了地方强势特征和全球特征之间的相互信息。我们提供了一种原则性方法,从理论上分析和改进标准培训和对抗性培训中语言模型代表学习的稳健性。广泛的实验表明,InfoBERT在自然语言推断(NLI)和问题解答(QA)的若干对抗性数据设置上达到了最先进的精确度。我们的代码可在 https://giuthub.AIcom网站上查阅。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
44+阅读 · 2020年10月31日
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
69+阅读 · 2020年10月24日
【Google论文】ALBERT:自我监督学习语言表达的精简BERT
专知会员服务
23+阅读 · 2019年11月4日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
5+阅读 · 2019年8月22日
Arxiv
21+阅读 · 2019年3月25日
Arxiv
8+阅读 · 2019年3月21日
VIP会员
相关资讯
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员