This technical note describes a new baseline for the Natural Questions. Our model is based on BERT and reduces the gap between the model F1 scores reported in the original dataset paper and the human upper bound by 30% and 50% relative for the long and short answer tasks respectively. This baseline has been submitted to the official NQ leaderboard at ai.google.com/research/NaturalQuestions. Code, preprocessed data and pretrained model are available at https://github.com/google-research/language/tree/master/language/question_answering/bert_joint.


翻译:本技术说明描述了自然问题的新基线,我们的模型以BERT为基础,将原始数据集文件中报告的F1模型分数与长期和短期答复任务中人类上限的相对值分别缩小30%和50%。该基准已提交Ai.google.com/research/NaturalQuesestion的官方NQ领导板。代码、预处理数据和预培训模型可在https://github.com/google-research/language/tree/master/langues/ageny_ question/bert_joint查阅。

8
下载
关闭预览

相关内容

Transformer文本分类代码
专知会员服务
117+阅读 · 2020年2月3日
【Google论文】ALBERT:自我监督学习语言表达的精简BERT
专知会员服务
24+阅读 · 2019年11月4日
ExBert — 可视化分析Transformer学到的表示
专知会员服务
32+阅读 · 2019年10月16日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
BERT相关论文、文章和代码资源汇总
AINLP
19+阅读 · 2018年11月17日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Arxiv
3+阅读 · 2019年9月5日
Arxiv
6+阅读 · 2019年9月4日
Arxiv
11+阅读 · 2019年6月19日
QuAC : Question Answering in Context
Arxiv
4+阅读 · 2018年8月21日
VIP会员
Top
微信扫码咨询专知VIP会员