Due to the very narrow beam used in millimeter wave communication (mmWave), beam alignment (BA) is a critical issue. In this work, we investigate the issue of mmWave BA and present a novel beam alignment scheme on the basis of a machine learning strategy, Bayesian optimization (BO). In this context, we consider the beam alignment issue to be a black box function and then use BO to find the possible optimal beam pair. During the BA procedure, this strategy exploits information from the measured beam pairs to predict the best beam pair. In addition, we suggest a novel BO algorithm based on the gradient boosting regression tree model. The simulation results demonstrate the spectral efficiency performance of our proposed schemes for BA using three different surrogate models. They also demonstrate that the proposed schemes can achieve spectral efficiency with a small overhead when compared to the orthogonal match pursuit (OMP) algorithm and the Thompson sampling-based multi-armed bandit (TS-MAB) method.
翻译:由于在毫米波波通信(mmWave)中使用了非常狭窄的波束,波束对齐(BA)是一个关键问题。在这项工作中,我们调查了毫米Wave BA的问题,并在机器学习战略(Bayesian优化(BO))的基础上提出了一个新颖的波束对齐计划。在这方面,我们认为波束对齐问题是一个黑盒功能,然后使用BO寻找可能的最佳波束对。在BA程序期间,这一战略利用测量的波束对的信息来预测最佳波束对。此外,我们建议采用基于梯度加速回归树模型的新颖的BO算法。模拟结果展示了我们提议的BA计划使用三种不同的代金模型的光谱效率表现。它们还表明,与正向匹配算法(OMP)算法和Thompson取样的多臂强(TS-MAB)方法相比,拟议的方案可以实现小顶端光效率。