We consider the problem of recovering an unknown low-rank matrix X with (possibly) non-orthogonal, effectively sparse rank-1 decomposition from incomplete and inaccurate measurements y gathered in a linear measurement process A. We propose a variational formulation that lends itself to alternating minimization and whose global minimizers provably approximate X from y up to noise level. Working with a variant of robust injectivity, we derive reconstruction guarantees for various choices of A including sub-gaussian, Gaussian rank-1, and heavy-tailed measurements. Numerical experiments support the validity of our theoretical considerations.
翻译:我们考虑的是利用(可能)非垂直的、实际上稀疏的一等分层从不完整和不准确的测量和收集到线性测量过程A中恢复未知的低位矩阵X的问题。我们提出了一种变式的公式,这种公式可以进行交替最小化,其全球最小化指数从Y到噪音水平的接近X。我们与一个强效注射的变体合作,为A的各种选择,包括Gaussian、Gaussian一等和重尾量测量的各种选择获得重建保障。 数字实验支持了我们理论考虑的有效性。