We consider the problem of recovering an unknown low-rank matrix X with (possibly) non-orthogonal, effectively sparse rank-1 decomposition from incomplete and inaccurate measurements y gathered in a linear measurement process A. We propose a variational formulation that lends itself to alternating minimization and whose global minimizers provably approximate X from y up to noise level. Working with a variant of robust injectivity, we derive reconstruction guarantees for various choices of A including sub-gaussian, Gaussian rank-1, and heavy-tailed measurements. Numerical experiments support the validity of our theoretical considerations.


翻译:我们考虑的是利用(可能)非垂直的、实际上稀疏的一等分层从不完整和不准确的测量和收集到线性测量过程A中恢复未知的低位矩阵X的问题。我们提出了一种变式的公式,这种公式可以进行交替最小化,其全球最小化指数从Y到噪音水平的接近X。我们与一个强效注射的变体合作,为A的各种选择,包括Gaussian、Gaussian一等和重尾量测量的各种选择获得重建保障。 数字实验支持了我们理论考虑的有效性。

0
下载
关闭预览

相关内容

专知会员服务
54+阅读 · 2020年9月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
9+阅读 · 2021年4月8日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员