Most computational approaches to Bayesian experimental design require making posterior calculations repeatedly for a large number of potential designs and/or simulated datasets. This can be expensive and prohibit scaling up these methods to models with many parameters, or designs with many unknowns to select. We introduce an efficient alternative approach without posterior calculations, based on optimising the expected trace of the Fisher information, as discussed by Walker (2016). We illustrate drawbacks of this approach, including lack of invariance to reparameterisation and encouraging designs in which one parameter combination is inferred accurately but not any others. We show these can be avoided by using an adversarial approach: the experimenter must select their design while a critic attempts to select the least favourable parameterisation. We present theoretical properties of this approach and show it can be used with gradient based optimisation methods to find designs efficiently in practice.
翻译:Bayesian实验设计的大多数计算方法要求多次对大量潜在设计和/或模拟数据集进行后继计算,这可能费用昂贵,禁止将这些方法推广到具有许多参数的模型,或禁止将许多未知因素加以选择的模型。我们引入了一种高效的替代方法,而无需根据沃克(Walker)(2016年)讨论过的对渔业信息的预期跟踪进行优化进行后继计算。我们举例说明了这一方法的缺点,包括缺乏重新校准的易用性,以及鼓励进行精确推断一个参数组合而不是任何其他参数组合的设计。我们用对抗性方法表明这些方法可以避免:实验者必须选择这些方法的设计,而批评者则试图选择最不有利的参数。我们介绍了这一方法的理论属性,并表明它可以用基于梯度的优化方法来有效查找实际设计。